If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10x^2-240=0
a = 10; b = 0; c = -240;
Δ = b2-4ac
Δ = 02-4·10·(-240)
Δ = 9600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{9600}=\sqrt{1600*6}=\sqrt{1600}*\sqrt{6}=40\sqrt{6}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-40\sqrt{6}}{2*10}=\frac{0-40\sqrt{6}}{20} =-\frac{40\sqrt{6}}{20} =-2\sqrt{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+40\sqrt{6}}{2*10}=\frac{0+40\sqrt{6}}{20} =\frac{40\sqrt{6}}{20} =2\sqrt{6} $
| 28=4(v+2) | | f/9+48=56 | | -10x^2+(x^2+3)^2=9 | | 7u+2=72 | | -x+47=6x-2 | | h/6+14=18 | | 0.4h+2=6 | | 5(q+4)=70 | | 3x+2+4x+3=360 | | u+31/6=7 | | 3y-4=12y+50 | | x2+2x-82=0 | | 99=9(s+2) | | Y=2z-3 | | Y13x=85 | | 2/3-1/6=1/6m-2/3 | | -13=2-b+10 | | 2x+5(-3)=3 | | s^-2(s+1)=0 | | 81^q=243 | | 8w-44=-12 | | 10w=940 | | 60x+300=0 | | (2x+1)÷3=13 | | -1/2+x+9/14=-1 | | .5;4s=s=24 | | 8w-44=12 | | s+564=823 | | m-48=48 | | 3-4k=12 | | m-45=8 | | h+39=72 |